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1. Introduction

Weak solutions of problems with m equations with source terms are proposed using an aug-
mented Riemann solver defined by m+ 1 states instead of increasing the number of
involved equations. These weak solutions use propagating jump discontinuities connecting
the m + 1 states to approximate the Riemann solution. The average of the propagated waves
in the computational cell leads to a reinterpretation of the Roe’s approach and in the upwind
treatment of the source term of Vazquez-Cendoén. It is derived that the numerical scheme
can not be formulated evaluating the physical flux function at the position of the initial dis-
continuities, as usually done in the homogeneous case. Positivity requirements over the val-
ues of the intermediate states are the only way to control the global stability of the method.
Also it is shown that the definition of well-balanced equilibrium in trivial cases is not suf-
ficient to provide correct results: it is necessary to provide discrete evaluations of the source
term that ensure energy dissipating solutions when demanded. The one and two dimen-
sional shallow water equations with source terms due to the bottom topography and fric-
tion are presented as case study. The stability region is shown to differ from the one
defined for the case without source terms, and it can be derived that the appearance of neg-
ative values of the thickness of the water layer in the proximity of the wet/dry front is a par-
ticular case, of the wet/wet fronts. The consequence is a severe reduction in the magnitude
of the allowable time step size if compared with the one obtained for the homogeneous
case. Starting from this result, 1D and 2D numerical schemes are developed for both quad-
rilateral and triangular grids, enforcing conservation and positivity over the solution, allow-
ing computationally efficient simulations by means of a reconstruction technique for the
inner states of the weak solution that allows a recovery of the time step size.

© 2010 Elsevier Inc. All rights reserved.

There is a wide range of physical situations, such as flow in open channels and rivers, tsunami and flood modeling, that
can be mathematically represented by first-order non-linear systems of partial differential equations, whose derivation in-
volves an assumption of the shallow water type. With rare exceptions, the governing equations are hyperbolic. The system of
equations in realistic shallow water models include source terms, that is, terms that are functions of the vector of unknowns.

For sometime it has been accepted that the discretization of source terms can be as challenging as that of the non-linear
advection terms. It must be said that for most cases, even naive discretizations of the source terms work reasonably well, but
there are some well documented situations in which only sophisticated schemes can perform adequately. When solving real
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problems one is likely to encounter all sorts of situations, with a high probability that naive schemes will compromise the
quality and reliability of the solution.

When incorporating the presence of the source terms in a given specific finite volume scheme (Roe’s scheme is used here)
the main focus has been traditionally put on how the numerical scheme can be modified so that it maintains a discrete bal-
ance between flux and source terms. In the context of the discretization of hyperbolic systems of conservative laws a fun-
damental point has been to get schemes that satisfy the preservation of steady-states such as still water equilibrium in the
context of the shallow water system. The difficulty to build such schemes was pointed out by several authors and led to the
notion of well-balanced schemes [9,10,15,19-21].

In this framework the development of robust and efficient explicit finite volume models of shallow water flow has been
the matter of recent research in the computational hydraulics literature. A few efforts have been reported on the search for
the best methods able to preserve the exact conservation property (C-property) [20] in presence of flow over irregular geom-
etries [4,11]. When dealing with simulation problems that involve bed variations and transient flow over a dry bed, these
flow features impose a heavier restriction than the classical Courant-Friedrichs-Lewy (CFL) condition [6,9,19] on the time
step size that may lead to inefficient computations. It is possible to avoid the necessity of reducing the time step and, at
the same time, preventing instability and ensuring conservation at all times by a suitable flux difference redistribution
[11,13].

It can be argued that the presence of source terms warrants the construction of new weak solutions appropriate to the
nature of the equations, rather than the use of those constructed for the simple, homogeneous case. Even ensuring the dis-
crete equilibrium formulated in well-balanced schemes, the direct application of the conclusions derived for the homoge-
neous case to cases with source terms leads to important difficulties. One of the most dramatic is the appearance of
negative values of water depth, not only in wet/dry fronts, but also in initially wet/wet Riemann problems.

Gravity and friction are the main forces driving open channel flows. When using the shallow water model in hydraulic
simulation, these forces participate in the dynamic equation as sources/sinks of momentum. In cases of steady shallow water
flow with non-zero velocity, the discrete balance must be revisited [12].

George [7] presented a well balanced augmented approximate Riemann solver for the extended one dimensional shallow
water equations including in the original solution vector two new variables: momentum flux and bottom surface. The solver
is well-balanced and maintains a large class of steady states by the use of a properly defined steady state wave: a stationary
jump discontinuity in the Riemann solution that acts as a source term. The idea of a stationary jump discontinuity is adapted
to the method proposed in this work where the original system is not enlarged. without modifying the original solution
vector of conserved quantities (mass and momentum), we present augmented approximate Riemann solvers for the shallow
water equations in the presence of a variable bottom surface and friction. They belong to the class of simple approximate
solvers that use a set of propagating jump discontinuities, or waves, to approximate the true Riemann solution. Typically,
a simple solver for a system of m conservation laws uses msuch discontinuities. We present a three wave solver for the
1D shallow water equations system (two equations) and a four wave solver for the 2D case (three equations). In this
work we go back to the original ideas of Roe using the upwind discretization of the source terms proposed by Vazquez-
Cendén [20].

The outline of the paper is as follows: the one dimensional discretization is described first, for a scalar equation with
source terms in Section 2 and then, in Section 3, for the 1D shallow water equations, followed by its application to a selection
of results to show its accuracy. In Section 4 the generalization to two dimensions, illustrated using triangular grids, is
presented and again applied to the shallow water equations. The final section contains the conclusions derived from the
work.

2. One dimensional scalar Riemann problems with source terms
The basic ideas underlying this work can be illustrated by examining the nonlinear scalar equation,

ou  of(u)
at xS (1)

where f{u) is a convex nonlinear function of u and s is a source term. From f{u) it is possible to find an advection, or transport
velocity :

df
b= =) (2)

We are interested in weak solutions of the Riemann Problem (hereafter RP) defined by the initial condition

u if x<O0,
ug if x> 0.

u(x,0) = {

This case corresponds to a RP with a source function.
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2.1. Numerical modelling

Weak solutions of the RP can be found using the integral form of (1). Given initial values u;, ug, a time interval [0,1] and a
space interval [—X,X] , with X sufficiently large, S < X, with S the position of the fastest wave at t = 1, the exact solution u at
time t= 1 satisfies the following conservation integral:

+X 1 +X
[t D =X ) = () — )+ [ [ s 4)
X Jo J-X
In order to obtain a numerical solution of (1) the domain is divided in computational cells of constant size Ax: the interval of
the ith cell is defined by [x;_1/2, Xi.1/2]. Let At be the time step and t" = nAt a generic time level. Assuming the usual notation
we indicate with u! the cell-average value of the solution u(x, t) for the ith cell at time t":
P [ e )
ur =— u(x,t")dx,

1 Ax JXi_12 i
u! is therefore a piecewise approximation of the solution at time ¢".

The first order Godunov method, updates the averaged quantities one time-step assuming the following piecewise con-
stant approximation,

u  ifx<O,
U1 if x> 0,

ux.0) = { ©®)
at each cell edge. The solution of the RP is evolved for a time equal to the time step and the resulting solution is cell-averaged
again obtaining the piecewise solution at the new time level t"*1.

In the Roe approach, the solution of each RP is obtained from the exact solution of a locally linearized problem defined by
an approximate solution ii(x, t). The approximate solution must fulfill the Consistency Condition [9] where the integral of the
approximate solution ii(x, t) of the linearized RP over a suitable control volume is equal to the integral of the exact solution
over the same control volume. In our case the control volume is characterized by the cell size, [-* 4], leading to

Ax

2

=Ax
2

Furthermore, as the source term s is not constant in time, we assume the following time linearization:

U(x, 1)dx = Ax (U1 +ui) — (f(Uig) — f(w)) + /01 /;sdxdt. (7)

Ax

Siv12 = /; S(X./ 0) dx. (8)

2

Now, the Roe’s approximate solution is constructed defining the following linear RP:

ol | g+ oit _
S A (Ui, u) 5 =0,

X u  ifx<0, 9)
u(x,0) = .
*,0) {um if x>0,
where 1" (ui.1,u;) is a constant. Integrating over the same control volume as in (7)
3
[ "0 1) = AX(i ) — Gyt — 1) (10)
2
Since we want to satisfy (7), the constraint that follows is:
(Of = 8)ii1yp = F(Uiy1) — F(Wi) = Sivry2 = 211 (Uip1 — i) (11)
leading to the following equality
}“i*ﬂ/z = }vi+1/2 9i+1/2» (12)
with
5 fluiga) = f(w) Si+1/2
Ai =——"———" 0 =1-— 13
i+1/2 Uiy — U i+1/2 f(ui+1) *f(ui) ) ( )

where 7 is the advection velocity when the source term s is not present and 0 is a measure of the relative importance of the
source terms over the advective part.

2.1.1. A two wave approximate Riemann solution }
A weak solution of the linear RP in (9) that satisfies (10) in the case 4,1/, > 0 is proposed:
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U; if x<0,
ﬁ(x, t) = Uﬁ] if0<x< /li+1/2 t, (14)
Uiy IFX>Aigpt,

where one wave is associated to the celerity 4 and the other wave is steady and with

A,

*% S
Uity = Uiy — (00U); 4 5 = Ui + (f) : (15)
i+1/2
Fig. 1 shows a sketch of the approximate solution in the particular case lm/z > 0,u;1 > u; and Sjq,2 < 0.
In case that 4;.1,, < 0 the proposed solution is:
u; if x < }Li+]/2 t,

ﬂ(X, t) = U? if ;L,H,]/z t<x< 07 (16)
u if x>0,

with

s
Ui =t + (00U), 4, = Uir1 — <:> . (17)
A i1y2

These solutions are then evolved for a time equal to the time step; the resulting solution is cell-averaged again obtaining the
piecewise solution at the new time level t""'. Assuming that /; 1, >0 and /i1, <0, the volume integral in the cell
[0, Ax] x [0, At] represented in Fig. 2 is:

UTTAX = U (Jio12A) + UN(AX — Ji 1At + Jis1 pAL) — U; (D1 2AL), (18)

that can be rewritten as

13
2
|
U | Wit1
: x
U; 0o
*%k
U.:
i+1 |
Si Si+1

Fig. 2. Control volume in the Godunov method.
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At

Ax’
In Fig. 2 the time step is taken small enough so that there is no interaction of waves from neighboring Riemann problems.
This would be necessary if we wanted to construct the solution at u/*! in order to explicitly calculate the cell average (18).
According to [9], in order to use the flux formula (19) it is only necessary that the edge value ii(x, t) remains constant in time

over the entire time step, which allows a time step roughly twice as large. Then, stability is ensured if the time step is limited
by:

uftt = uf — ((5”91)1;1/2 + (5’191)”1/2) (19)

At< AP, AP =X (20)

|4]
and the numerical scheme can be formulated in a general way as:

; _ At
it =uf — ((6f — )1 + (0f — 5):41/2)&7

(21)
—E. = (%08

(O =)0 = (% 90u>m/2.

Straightforward algebraic manipulation converts (21) to an equivalent numerical flux-based finite volume scheme [8],
n n_ (fr .\ At At

uftt = uf - (fi+1/2 _fi—l/z) E‘*’ < 12 S 1/2) Ax (22)
in which the numerical flux (denoted by an asterisk) for first-order upwinding is given by

fiap = (fﬂ +£) - (|A‘5”),+1/2 (23)
with a similar expression for f7, ,, and

1 =
Siﬁl/Z = i (1 + Sgn(k))i+1/25i+1/2. (24)

These are essentially the two ways of extracting approximate information from the solution of the Riemann problem used in
Godunov-type methods: one approach is, following Godunov’s original method, to use the Riemann solutions to determine
cell intermediate fluxes at each time step as in (23); the other approach is based on the wave propagation algorithm in which
waves arising in Riemann solutions are directly re-averaged onto adjacent cells in order to update the numerical solution as
n (21). The second is applicable to equations in the form of a conservation law as well as those where there is not a flux
function (non-conservative equations). Therefore, it is the latter route the one we follow in this work together with the
new idea that the presence of the source term generates more than one intermediate state.

When 1} > 0 in all computational cells and positivity over the updated solutions is required, uf*' > 0, the limit for the
time step size in (20) is valid only if u; > 0 and u;* > 0 is guaranteed. Otherwise, it is necessary to define additional restric-
tions over the cell average, isolating the contributions of each independent RP.

Then, with reference to Fig. 1, in the case u}7; < 0atai+ 1/2 edge, the time step must be redefined ensuring positivity on
the cell average value in the control volume [0,]Ax]

1
(div12A00U + <2AX ’11+1/2At> i =0 (25)

leading to the following limit in the size of the time step

n
At <AL, Apt =1 A% LA (26)

=
2 i 2 Uipr — Uiy

In case that u; ; <O atai+ 1/2 edge, the limit is given by:

1 Ax uf

At <A, At = ‘
27 —uj

(27)
z+1/2| u?

It is worth noting that if u?,;, = 0 and u;* < 0 or if u?! = 0 and u; < O the time step becomes nil according to (26) and to (27)
respectively. Then, to ensure positivity of the solutlon in all cases the Godunov’s method for the scalar case is formulated as
follows:

uf ™t = ufl = ((0f =)y + (Of = )'“/z)it’ -

where the fluxes in a general intercell edge i + 1/2 are computed as follows:

o Ifuf, =0and u;;, <O set:
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(of - S)ivi2 =0, (of - 5);‘11/2 =0. (29)
e If u! =0 and u; <O set:

Of =8)is12=0 (f =$)is1p=0. (30)
e Otherwise set:

(5f - S)ii]/z = (}vi()éu)iﬂ/zs (31)
with

T4 1 - 3

Yy = 5 (AE J2]). (32)

In consequence the stability region becomes:

At < min(At, At*, A, (33)

where At™ is defined as in (26) if u;7, < 0 and uf,;0 and At* is defined as in (27) if u; < 0 and u}+0.

Depending on the particular approach chosen to discretize the integral source term s/, the numerical scheme provides
different solutions. The criterion to decide what is the best option for the source term discretization must be guided by the
knowledge of the weak solution properties. This will be illustrated later with examples.

2.2. Application to the Burgers’ equation with source terms

Consider Burgers’ equation including source terms as proposed in [11]:

ou 1ow oz

atzax T U (34)
with the initial data
u if x <0, zy ifx<0,
0) =u,(x) = . Z(x) = . ' 35
u(x,0) = tio(x) {uR if x>0, ®) {zR if x> 0. (35)

The exact solution to this problem is provided in Appendix A.

2.2.1. Numerical tests. Source term integration
In this section several RP solutions for Eq. (34) will be studied, analysing the evolution of the solution depending on the

integration of the source term s; 1, in (8). The cases are summarized in Table 1. All cases are computed using Ax = 1 and
CFL = 1. Numerical solutions will be performed using numerical schemes (22) and (28) and the following approximate celer-
ity A:

- u; + u;

Jis1 = (’“27‘) (36)
Depending on the approach applied to integrate the discontinuous source term s;.,, different solutions appear. Their prop-

erties will be stated from comparison with known exact solutions in order to select the best option. Three approaches for
si+1/2 Will be checked. The first approach for s;,1,2,s,; ,, is constructed enforcing equilibrium in steady states:

1
St = —i(um + i) (Zi1 — Zi). (37)

Two alternative approximations that do not enforce discrete equilibrium are also defined for numerical discussion:

Table 1

Summary of test cases.
Test case up Ug zZr ZR url
1 2.0 1.0 0.0 0.5 1.5
2 2.0 1.0 0.0 -0.5 2.5
3 1.0 2.0 0.5 0.0 1.5
4 1.0 20 0.0 0.5 0.5
5 2.0 1.0 0.0 1.5 0.5
6 1.0 2.0 1.5 0.0 25
7 1.0 20 0.0 20 -1.0
8 2.0 0.0 0.0 2.5 -0.5
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St = Ui (Zig1 — 1), Siq5 = —WilZi — Z). (38)

In test case 1 the exact solution is a right moving shock connecting ug with u* = 1.5 with a celerity a = 1.25. Fig. 3(a) shows
the results given by the numerical scheme in (28) for approaches s s” and s¢. Function s?(— o —) provides an accurate value
for u*, while s?(— ¢ —) and s°(—A—) overestimates and underestimates its value respectively, leading to a wrong shock veloc-
ity. In test case 2 the solution is a right moving shock connecting uz with u* = 2.5 with a celerity a = 1.75. Also the function s®
provides the best results, as depicted in Fig. 3(b). Approaches s’ and s¢ lead to the same tendency as before.

Test cases 3 and 4 correspond to a right moving rarefaction wave. Fig. 4(a) and (b) shows the results at t = 15 given by the
numerical scheme in (28) for test cases 3 and 4, respectively, using the integral approach s?, s? and s¢. Although the approx-
imate solution is constructed assuming only jumps, the rarefaction is satisfactorily computed when using approach s* in both
cases, while s”(— e —) and s(—a—) overestimates and underestimates the value of u; respectively.

The good accordance among exact solutions and numerical results for approach s? can be explained attending to the result
given by the approximate linear obtained when using this option, as in in this case the value of u;7, in (14) becomes

** 0

Uiy =u—oz (39)
equal to the analytical value for u* in the case of a shock wave (172) or equal to the analytical value for u; in the case of a
rarefaction (178).

In test case 5, u; > ug, and for the homogeneous case, the solution is a shock wave. The presence of the source term leads
to a rarefaction characterized by a value of uj = 0.5. Fig. 5(a) shows the results at t = 15 using numerical scheme in (28), and
how approach s® accurately reproduces the rarefaction wave. When using the approach s where the solution becomes a sta-
ble rarefaction, defined from an incorrect value of u; = u;;{ = 0. If approach s?(— o —) is applied the initial solution becomes
steady, as U1 = u,ﬁ'{’. In absence of exact solutions this would lead to the misleading conclusion that the result given by ap-
proach s? would be correct and the integral approach would be retained as a well balanced one.

(a)2s (b) s I
2 -\ 2.5 |
a s
1.5 189981 i.:.fj:i.i.iiu:" 3 p
> ‘A‘ w; 5 1.5 I“
1 ‘\i\k;‘ "\
1 o
05 N
0 0
5 0 5 10 15 20 25 5 0 5 10 15 20 25 30
X X

Fig. 3. (a) Exact solution (—) and computed solutions at t = 15 for test case 1, and (b) exact solution and computed solutions at t = 15 for test case 2, using
approaches s%(— o —),s?(— e —) and s°(—a—).

(a) 25 (b) 25

: J #~
15 o 2 15 o

=} =}
1 1 }
05 0.5 ; =t

e
e

0 0

-5 0 5 10 15 20 25 30 35 -5 0 5 10 15 20 25 30 35
X X

Fig. 4. (a) Exact solution (—) and computed solutions at t = 15 for test case 3, and (b) exact solution and computed solutions at t = 15 for test case 4, using
approaches s?(— o —),s?(— e —) and s°(—A—).



J. Murillo, P. Garcia-Navarro /Journal of Computational Physics 229 (2010) 4327-4368

(a) 25 (b) 3.5
3 )
2 [eseee \
25 ‘1\ it
15 2 .
=} | > ]
1 | e 1.5
r i
1 1
05 i o
_A'AA‘ 0.5
et
0 i 0
-5 0 5 10 15 20 25 0 10 20 30 40
X X

Fig. 5. (a) Exact solution (—) and computed solutions at t = 15 for test case 5, and (b) exact solution and computed solutions at t = 15 for test case 6, using
approaches s?(— o —),s?(— e —) and s°(—A—).

(a) 25 (b) 25
2 5666
: ) -~
15 / D,x“
1 loose 15
> i bdddidass >
05 o T 1
IS5
0 Al
0.5 e
0.5 L
-1 0
5 0 5 10 15 20 25 30 35 5 0 5 10 15 20 25 30 35
X X

Fig. 6. (a) Exact solution (—) and computed solutions at t = 15 using numerical scheme (22), and (b) exact solution and computed solutions for numerical
scheme (28), at t = 15 for test case 7, using approaches s¢(— o —),s?(— e —) and s°(—a—).

The solution for test case 6 for the homogeneous case is a rarefaction wave, but the presence of the source term leads to a
shock wave, defined by u* = 2.5 Fig. 5(b) shows the results at t = 15 for numerical scheme in (28). Integral approach s? pro-
vides the most accurate solution while the integral approach s’ leads to an overestimation of u;. If approach s¢ is applied the
initial solution becomes steady in time, as u;;.; = u;}y. Again, in absence of analytical solutions, the result given by approach
s¢ may seem correct and would be retained as a well balanced approach.

In case 7, the initial conditions are defined to force null or negative values of ii(x, t) in the right side. The numerical solu-
tion must converge asymptotically to a stable rarefaction between u; = 0 and uz = 2. When using numerical scheme in (22)
with approach s,, negative values of u appear, as depicted in Fig. 6(a). Only the solution for approach s, remains positive,
although an incorrect value of u; is predicted. If, on the other hand, the scheme is carefully applied as in (28) the results im-
prove as shown in Fig. 6(b). In this case both integral approaches s® and s¢ provide accurate and similar results, recovering the
self-similarity of the problem. Approach s’ provides the same results as before.

For test case 8 the right state ug is null, and the exact solution is a steady shock. If enforcing positivity over the solution,
must remain steady and equal to the initial state. Fig. 7(a) shows how when using numerical scheme in (21) approaches s,
and s, break the self similarity of the problem reaching negative values of u, while approach s, leads to a result that may
seem reasonable, a right moving wave, but incorrect. The results for the numerical scheme in (28) are depicted in
Fig. 7(b), showing how both integral approaches s and s¢ retain correctly the initial state, while integral approach s” provides
the same incorrect results.

3. 1D Systems of conservation laws with source terms

The discussion is next extended to hyperbolic nonlinear systems of equations with source terms in 1D, that expressed in
integral formulation are:

) X X2
—/ Udx+F|, —F, f/ Sdx = 0, (40)
ot Jy : ,
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(a) 25 (b) 25
2 {eoe
Al 2 lesse
15 ]
1 i 15
=] L-o-o-o—o\ > \
0.5 2 1 \
0 \\l o0-0-0-0066-6-06-06-06-6 “b—-r-o—o—.
V 05 AN
05 k \
R\
-1 0 »
5 0 5 10 15 20 5 0 5 10 15 20
X X

Fig. 7. (a) Exact solution (—) and computed solutions at t = 15 using numerical scheme (22), and (b) exact solution and computed solutions for numerical
scheme (28), at t = 15 for test case 8, using approaches s?(— o —),s?(— e —) and s°(—a—).

where X1, X, are the limits of a generic control volume. The differential formulation is obtained assuming smooth variation of
the variables and an infinitesimal width of the control volume:

oU  OF
s (41)
and from this formulation it is possible to define a Jacobian matrix for the convective part J
dF
J= au- (42)

Assuming that the convective part in (40) is strictly hyperbolic with two real eigenvalues ', 4 and eigenvectors e!, e?, it is

possible define two matrices P = (e!,e2) and P! with the property that they diagonalize the Jacobian J

J=PAP . (43)

3.1. Approximate solution of the Riemann problem

Given a Riemann problem for (41) with initial values Uy, Ug, a time interval [0,1] and a space interval [—X,X] , where
X < Jminy, X = e (44)

and Apmin, Amax are the positions of the slowest and the fastest wave at t = 1, the solution U at time t = 1 satisfies the following
property:

+X r1 +X
/ U(x, 1) dx = X(Ug + Uy) — (F(Ug) — F(U})) + / / S dx dt. (45)
J-X 0o J-X

In order to obtain a numerical solution of system (41) we divide the domain in computational cells of constant size Ax: the
interval of the ith cell is defined by [x;_1 2, Xi+1,2] Where X1, = iAx and the position of the center of the cell x; is defined by
(i —1/2)Ax. Let At be the time step and t" = nAt a generic time; assuming the usual notation we indicate with U} the cell-
average value of the solution U(x, t) for the ith cell at time t":

v-l Mo md 46
—ﬁ/ (x,t")dx. (46)

U is therefore a piecewise constant approximation of the solution at time t". The first order Godunov method, provides a
way to update the averaged quantities one time-step in the following way: the piecewise approximations (46), are consid-
ered as initial values of local RPs:

N+ % (U;,Uiq) =SU;, Uiy),

U, ifx<0, (47)
U(x,0) = '
*.0) {UM if x> 0.

These RP solutions are then evolved for a time equal to the time step; the resulting solution is cell-averaged again obtaining
the piecewise solution at the new time level t"*!. In the Roe approach, the solution of each RP is obtained from the exact
solution of a locally linearized problem. This solution must fulfill the so called Consistency Condition, i.e. that the integral
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of the solution U (x, t) of the linearized RP over a suitable control volume must be equal to the integral of the exact solution of
(47) over the same control volume. Using (45) this condition becomes:

X 1 X
/ U(x, 1) dx = X(Us.; +Uy) — (F(Up.;) — F(Uy)) + / / S dx dt. (48)
J-X 0 X

Since the source term is not necessarily constant in time, we assume the following time linearization of the Consistency
Condition:

X
/ U(x,1) dx = X(Uyyy + U;) — (F(Uj1) — F(Up) — it o), (49)
Y
where

+X
Siip = / S(x,0) dx (50)
J-X

is a suitable numerical source vector.
In this formulation, RP (47) is approximated by using the following linear RP:

ou * U __
a TV %=0,

ﬁ(xO)—{U‘ if x <0, 61
T\ Uy if x>0,

where J*(U;,U;;4) is a constant matrix. Integrating (51) over the control volume [-X,X] x [0,1] , where X satisfies (44):
+X
/ U(x,1) dx = X(Uiz1 +Ui) =J (Ui, Uisq) (Ui — Up). (52)
-X

Since we want to satisfy (49), the constraint that follows is:
OFii12 — S = 1111200111 2, (53)

with 6Fi1, = F(U1) — F(U;) and 6U;.4,, = U1 — U; Moreover, two more conditions are standard requirements for the Roe
method.
Jii1/2(Uis1, Ui, is diagonalizable with real eigenvalues

. . (54)
Ji+1 /2 (Ui+1 s UI) — Ji+1 2 (U,) SmOOthly das Ui+1 — U,‘

Considering that it is possible to define an approximate Jacobian J;,; /2 for the homogeneous part, characterized by a set of
approximate eigenvalues 2!, 1> and eigenvectors &', 2, two approximate matrices, P = (é',é?) and P~ are built with the fol-
lowing property:

Ji+l/2 = Pi+1/21~\i+1/2pi_+]1/2- (55)

The difference in vector U across the grid edge is projected onto the matrix eigenvectors basis and the same for the source
term:

Uii12 = PiapAit12, Siviz = Pi12Bii2 (56)
with Aiq2 = (o! o2 )irﬂ/zand B =(p' p? )iT+1/2' Expressing all terms more compactly:
N
OFi 10 —Sii10 = Z(i*“e)iﬁuzﬁ (57)
m=1
where
5 AN
iiﬂ/z = ;“ﬁl/ZHﬁl/b 9?11/2 = ( 5 ) (58)
A0/ 172
so that the desired matrix in (52) is
Jip=PAPTY), (59)

with A* = A®, where A;.,is a diagonal matrix with eigenvalues Iﬁwz in the main diagonal:

~ L
Aip12 = (AO %) (60)
i+1/2
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and @4, is a diagonal matrix with 0?11/2 in the main diagonal:
0" 0
B2 = < . 02> . (61)
i+1/2

3.2. Application to the 1D shallow water equations

For the 1D shallow water equations the relevant integral formulation in (40) derives from the depth-averaged equations
of mass conservation and of momentum, with

U—<h> F= hu S= 0 62
- hu 3 - hu2+%gh2 ’ - /1;_:/_;_:/ ; ( )

where h represents the water depth, u the depth averaged component of the velocity vector and g is the acceleration of the
gravity. The source term of the system is split in two kind of terms. The terms p, and t,are the pressure along the bottom and
the shear stress in the x direction respectively, with p , the density of water. The above formulation is written in terms of the
unit discharge and not valid for arbitrary cross sections. In order to extend the following discussion to general 1D problems
[5] should be followed.

The convective part in (40) leads to two real eigenvalues ', /2 and eigenvectors e!, e?,

Ad=u—c, Z=u+c,

e1:<u1c>’ ez:(ulc)’ ©

with ¢ = y/gh. Regarding the source term the following differential equation for the bottom slope can be obtained:

Do —ghls (64)
The approximate Jacobian J for the homogeneous part [14] is
jm/z = <~2 0 ~y 1~> . OFp = ji+1/25Ui+1/2 (65)
C-ut 22U/,
with
hi + hi4 Uiq \/E + ui\/Fi

e=fgm R, gt TRV (66)

Vhig + \/E
and the resulting set of approximate eigenvalues and eigenvectors are

AN=0-¢ 2=0+¢,
1

a—a>’ ézi(ﬁl&)‘ 7

3.2.1. A three wave approximate Riemann solution

Depending on the flow conditions, three approximate solutions that satisfy (49), are proposed. The solutions for ﬁ(x, t) are
governed by the celerities in A;, ,2 and each one consists of four regions.

The details of the apprimate Riemann solution for each case are provided in Appendix B.

Following Godunov’s method these RP solutions are then evolved for a time equal to the time step, the resulting solution
is cell-averaged obtaining the piecewise solution at the new time level t"*!. If both i and i+1 are subcritical, the integral vol-
ume in cell [0, Ax] x [0, At] is depicted in Fig. 8. Focusing on the updating rule for cell i:

U A = U (32 ,A0) + U7 (Ax = 32, AT+ L, AL ) + U; (=1, A0, (68)
that can be rewritten as
U A = UF(AX) + (Uf" = U7) (72, 0At) + (U] = U;) (7L, A0 ) (69)
and considering (183) the updated value U is:
n n ~7% At ~7% At
U = U - (00@l)? N (0€2)/, 1 e (70)

Straightforward algebraic manipulation converts (69) to an equivalent numerical flux-based finite volume scheme [8],
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N1 N2 1 N2
)‘i|—1/2 R )‘1—1/2 /\7;+|1/2 t)‘i+1/2
\ \ /
Uiy
I
I

Fig. 8. Control volume in the Godunov method.

U =uy - (FM/Z - Fi—l/Z) ax T (sm/z + sztl/z) Ax (71)
in which the numerical flux (denoted by an asterisk) for first-order upwinding is given by
. 1 1 0~
Fiip= §(F1'+1 +F) - E(P\A\P 15U)i+1/27 (72)
with a similar expression for F;_, , and
Sii]/z = (PIiP?]S)M/z (73)

and I* = A™' L (A £ |A)).

In Fig. 8 the time step is small enough so that there is no interaction of waves from neighboring Riemann problems. This
would be necessary if we wanted to construct the solution at U'"! in order to explicitly calculate the cell average (68). If
positivity of all water depth values in the solutions is guaranteed, h;" > 0 and h;,; > 0, according to [9], in order to use
the flux formula (70) it is only necessary that the edge values ﬁ(X, t) remain constant in time over the entire time step, which

allows a time step roughly twice as large and the time step is limited by

Ax

max |im|’
m=12

At <A, At = (74)

As the cell average is constructed averaging with the terms U;” and U;,,, the appearance of negative values of h;" and h; ,
must be considered. Fig. 9 represents a case with a negative value of h;;, atai+ 1/2 edge, where the flow is locally subcrit-
ical as in (182). As the approximate solutions used in each RP are independent, it is necessary to define the time step ensur-

ing that the cell average value in the control volume [0,1Ax] remains positive
n+1 ] *k 32 n 1 32
B 5 A = by (R0A8) + By (5% =2, AL > 0 (75)

leading to the following limit in the size of the time step

32
t /\i+,1/2 t
:

U, Ui Uip
10 1 1Ax x
| | |

R | |
---------- : h 1 I
- i+ PR
|
| | L

Fig. 9. Solution ﬁ(x, t).
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hrl
At<AEr, AP =L X % (76)
27 A1+1/2 hiy —hiy
or in the case h; <0
n
At < AE, At — 1 Ax nh _ (77)
M hi = hi

One case of special interest are wet/dry interfaces with discontinuous bed level, as it is possible to generate negative water
depths in the initially dry region of widehatU(x, t). According to (76) or (77) the time step becomes nil in that case. To ensure
positivity and conservation of the solution for all cases the Godunov’s method is formulated as follows:

_ At
U?H =U; - ((51: - S)ituz + (6F — S)m/z) Ax’ (78)
where the fluxes in a general intercell edge i + 1/2 are computed as follows:
e Ifh,; =0and h{; <0 set:
(OF = 8)i110 = (F = 8);10, (OF— S),*H/2 =0. (79)
e If hf =0 and h; < O set:
(0F — S);l/2 = (6F=8)i,10. (F=8);1,=0. (80)
e Otherwise set:
N;
(OF — )51 Z} 0o@)} . (81)
m=1
with
1 et 5
Vo =5 (A= 2)). (82)

The two main ways of formulating the Godunov type numerical solution for a system are then presented as it was done
before for the scalar case. Note that because the numerical source integral cannot, in general, be written as a difference, it is
not possible to include it in the numerical flux difference formulation (71). This means that the balance sought between flux
derivatives and sources in the numerical flux based scheme can only be achieved locally by balancing non-zero fluxes
through the edges of the control volume instead of setting every component to zero as in (78).

When in supercritical conditions values of h; < 0 or h;}, < 0 appear, the cell averaging in the Godunov method avoids
negative values of h, as the source term does not participate in the updating of the water depth. In consequence, the stability
region becomes:

in(At”, At ALY if (172),; 0
A< {mln( JAE ALY if ( Jiviz <0, (83)

At otherwise,

where At* is defined as in (76) if h;;, < 0 and h;, ;>0 and At* is defined as in (77) if h; < 0 and h;#0.

One result of Roe’s linearization is that the resulting approximate Riemann solution consists of only discontinuities and
ﬁ(x t) is constructed as a sum of jumps or shocks. To avoid unphysical results the version of the Harten-Hyman entropy fix
[18] is used. In the case of left transonic rarefaction A <0< A, with ; = A(U;) and 4y = 4(Uy,1), the jump associated to
/11+1/2 is decomposed into two new jumps,

Ra-1) 7
! _;JH, p:;,}ﬂ((ﬂﬂ)), (84)

Vit 4 i+1 ‘i

i+10

with 2! + 21 = 7', and 7! < 0 and 7! > 0 by definition.

This idea can be applied to the decomposition of the source term associated to ' into two new values, ! and B'. Their
definition has to be done enforcing a conservative splitting of the source terms, ! + ! = '. Numerically it is possible to
force a splitting proportional to the one performed on the Z}H 2 Wave, that is

a7
but this option results in erroneous results and in a reduction of the time step size, as the values of ! and ! as defined in

(85) are much greater than the original one, #', as under these conditions /! is a travelling wave with almost nil velocity. The
option used in this work is

Popl = ﬁ” (85)
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Bl =p', B =0, (86)

that preserves the stability region in (83), 51mply replacing / A,+1/2 by AH] 2
For a right transonic rarefaction 4* < 0 < 27 1, the entropy fix procedure is entirely analogous to the left rarefaction case.
The single jump in /2 is split into two smaller jumps 72 and 42

- 2
@it o (a-7)
Y T it S Ly A (87)
- ) (e = H)
with 72 > 0 and /2 < 0 by definition. The source term is split enforcing
B =F, B =0, (88)

so the stability region in (83) is preserved, simply replacing 22 2%, by Z,?H/Z.
3.3. Integration of the source term

The source term in (50) is expressed as

0
Si+1/2 =\ _w ) (89)
Pw  Pw/it1)2

where "’7 and T" attend to the pressure and friction exerted on the bed respectively.

There is not a unique way to perform the numerical integral of the source term in (50). Under the hypothesis of smooth
variation of the variables and an infinitesimal width of the control volume, it is possible to define the integral in (50) eval-
uating /‘)’—; as

P\ g 90
— = —g(hoz2);, 15 (90)
Pw/ 12

with h = 1/2(h; + hi,;). Assuming a piecewise representation of the bed level, another possibility is to use the physical def-
inition of the hydrostatic force exerted over the bed discontinuity so the pressure head depends only on the free-surface le-
vel. Attending to this definition, (50) is defined using the following approach for g—fv:

() =g 2)se o
Pw/iv12
with
; if 5250 h; if > 0and d; < zi4,
j= {i+1 . 20,7 62 =4 hyy if z<0and diq < z, (92)

6z  otherwise,

where d = (h + z). Both approaches can be blended to provide another expression for the thrust term, that we will refer to as

Py
3.
Pw/ 12

Pw
that considers the problems associated to flow across an upward step in overtopping waves.
In cases of still water with a continuous water level surface all three approximations of the trust term, a, b and c, provide
correct solutions for all values when constructing the approximate solution U(x, t), as in this particular case, Fig. 10:

Pw Pw

max <<P_)a7 (P_b>b>i+1/2 if 6dsz > 0 and 5z > 0, )

b
(”—b> otherwise,
Pw/is1)2

W +z=hi +zi=h, +2zi1 =hl; + 2z,
(hu) = (hu); = (hu);7; = (hu)j; = 0.

i+1 =

(94)

This is a particular case, and in cases of nonzero velocity, differences among the solutions provided by the source term inte-
gralin (p,/p,)% (pb/pw)b and (p,/p,,)° arise. One consequence of utmost importance is that they can generate negative val-
ues of water depth in the inner regions of the weak solution. In wetting/drying fronts negative values can be avoided if in
each i + 1/2 edge with discontinuous water level surface, characterized by

h? +Zi <Zi, h?ﬂ =0 (95)

or
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hi = h; ‘ hi—&-l‘ B
T
. Zi+1
7

Fig. 10. Solution fl(x, t) in case of static equilibrium.

h?+1 +Ziy1 <z, h? =0, (96)

a zero velocity in the involved cells is enforced, u?,; = u! = 0, in combination with approach (p,/p,,)". This procedure, that
considers the cell edges characterized by (95) or (96) as solid walls, will be referred to as approach (p,/p,,)".

Regarding the friction term, the discretization based on [12] is applied

T - n?i|i
b = 8(hSp)i 1 pAX,  Spisija = (4/3> . (97)
) i+1/2

Puwfis)2 max(h;, hiq

The importance of the discrete equilibrium in cases of still water to provide well-balanced schemes has been widely re-
ported, but it is important to stress that with the unified formulation of the source terms, the scheme becomes well balanced
in steady cases with no null velocity. According to numerical scheme (78), the stationary solution is reached when all updat-
ing components of the linearized solution become nil, that is (Ga)ﬁl/z =0 for m=1, 2, leading to a constant discharge in all
zones of the weak solution. In the subcritical case:

(hu)" = (hu); = (hu);i; = (hu),; #O0, (98)
or in the supercritical case, with u > 0:

(hu! = (hu);,, = (hwy, = (hu)!,, <. (99)

3.4. Reconstruction of the approximate solution ﬁ(x, t)

The linearization of the source terms leads to extremely small values of the allowable time step, as At™ or At* can be var-
ious order of magnitude smaller than At*. This can be avoided by means of a reconstruction of the approximate solution

U(x,t). The strategy proposed here is based on enforcing positive values of h; and h;;; when they become negative. Consid-
ering that el = 1, positive values of h; require that

1
hi = hi + O‘i]+1/2 - <E> =0 (100)

A/ i41)2

leading to the following limit over p'

ﬂilﬂ/Z > Brins Biin = _<h? + O‘z‘1+1/2> ‘:11'1+1/2|- (101)

*x

Considering that & = 1, positive values of h;}

; require that

2

hiy = hiy —of ), + <£> >0 (102)

2/ ix1)2

and a limit over f? appears
n 2 3
ﬂi2+1/2 > Brins Boin = _(hm - (a)i+1/2)/“1‘2+1/2' (103)

The reconstruction proposed in this work will be applied only to subcritical wet/wet RP, as in dry/wet RP the appearance of
negative values of h;or h;;, in the approximate solution is helpful to provide a correct tracking of the flooding advance, and in
supercritical cases the cell averaging of the weak solutions ensures positivity of the solution. Also cases where both h; < 0
and h{; < 0 are omitted.
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In the case h; < 0and h7, > 0 and At* < At’, the new value of ' is redefined ensuring that h;;, remains positive or null.
To ensure conservation > must be replaced by the new value of —g', then

TR 1 2
ﬁ] _ ﬁ:]‘nin if — /))mf'n = ﬁmin7 ﬁZ _ —ﬁl- (104)
B otherwise
In the case h; > 0 and hj;; < 0 and At < At’, the new value of §? is redefined ensuring that h; remains positive or null. To
ensure conservation ! must be replaced by the new value of —g?, then

ﬁZ — {ﬁfnin if 7ﬁfnin = ﬁ:ru'm

B otherwise,

=5 (105)

3.5. Dam break test cases

In this section we present comparisons among exact solutions of the Riemann problem for system (40), neglecting fric-
tion, and numerical solutions. The exact solution corresponding to a frictionless dambreak flow over a discontinuous bed is
detailed in Appendix C. The results are presented in the form of plots of the total depth, mean discharge, Froude number and
energy per unit weight or head. The examples are chosen to represent different combinations of wave patterns. The accel-
eration due to gravity is set equal to g = 9.8 m?/s. In all cases the bottom step is positioned at x = 0 and has a variable height.
In all cases Ax =1 and CFL=1. When applying the reconstruction technique of the weak solution proposed in (104) and
(105) no difference in the solution has been observed when comparing with the original solution.

Test case 1 is a dam-break type problem, with a combination of rarefaction and shock waves. The initial condition consists
of two columns of water of different height and zero velocity. The solution, presented in Fig. 11, contains a left moving rar-
efaction wave, a stationary shock at the step and a right-moving shock wave. The presence of the step leads to a reduction of
the total water height running to the right as compared to the flat bottom case. This reduction is due to the stationary shock,
which dissipates part of the energy of the shock wave. All three approximations of the pressure term, (p,/p,,)%, (0»/ pw)b and
(py/ Py, pProvide results of similar accuracy, for the total depth, mean velocity, Froude number and energy. The options
(pb/pw)b and (p,/p,,)° in particular overlap completely so that they cannot be distinguished in the plot. The position of

1.2 1.2
1 " 1
0.8 0.8
£ . 0 )
~ 06 E 06
: \ E
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0.2 0.2
0 0 .o
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0.7
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0.6 T
I
0.5 \ 0.8
04 / /"' - A
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" T
0.3
/“ 0.4 ;
0.2 / oo
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Fig. 11. Test case 1: comparison between exact (—) and numerical solutions at t=5s obtained with approaches (p,/p,)"(—o—),

s/ Pu)’ (=0 =) and (p,/p,,) (—-).



thefapexpansion and the shock are correct and the dischargedoes not present oscillations in the origin. The correct behavior
of the|[fumerical scheme is explained attending to the charactertstics of the weak solution, that in a subcritical case, provid

1 _candthht v Hue—of-Hischarce for-the two-innerrecions —and- - 1eccordineto-the-evact-solution{see-Table ’)\
a-canstppt-value-of dischargeforthe-two-innerregions Urand- U according-to-the-exact-solution-{see Table 2}

Tegt|¢case 2 is alsp a dam-break type problem, with a combinatiom\of rarefaction and shock waves. The initial condftion
conpidtp pf fwo columns of water of different heights and velocity on theNeft side. The solution, presented in Fig. 12, ¢gntains
a left [moving rarefaction wave, a stationary shock at the step and a right>\moving shock wave. The numerical s y/ tion for
appfofkimation (p,/p,,)? differs strongly from the analytical solution for all thaplotted variables, and also providés an incre-
ment pf the total walter height. Approximations of the pressure term, (p,/p,,)’ am\(p,/p,,)", provide the same rg lts leading
to ajc( jlrect description of the total depth, the mean discharge, Froude number and compute the energy dissipé 10n correctly.

Teqt| ¢case 3 is a two shock case with a convergent flow. The solution is presentedMa Fig. 13, and contghhs a left- -moving
sho¢k] 4 stdtionary ghock at the step and a right-moving shock wave. As in the previous ®xample, the stgp acts as an energy

issippfipn| mechanjsm. All three approximations of the pressure term, (p,/p,)", (Ps/0) a0d (p,/ 04/, provide results of
imjlalrfaccuracy, for the total depth, mean discharge and Froude number, as this case corresponds tg/a relatively mild slope.
able 2
Summafy of te¢st cases.
\ Test cise hy hg up
1 1.0 0.30179953 0.0
2 4.0 0.50537954 0.1
3 2.5 2.49977381 15
15 0.16664757 2.0
1.0 0.04112267 0.2
0.6 0.02599708 0.35
1.1 0.49457729 49
15 0.0 2.2862
1 15 0.0 -25
1 15 0.0 -5.0
45
4
3.5
E| 3
N
+ | o
+ / ..... 4
FoN
15 ™
1 AN ™
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/ L
/
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Fig. 13. Test case 3: comparison between exact (—) and numerical solutions at t=5s obtained with approaches (p,/p,)"(—o—), (pb/pw)’J
(=) and (p,/py)" (=2-).

The strongest differences appear in the total water height, with (p,/p,,)’ and (p,/p,,)* providing the most energy dissipative
solutions.

Test case 4 is also a two shock case with a convergent flow, with an initial discontinuity in the water depth. The perfor-
mance of the numerical scheme in cases with this type of discontinuity is of major importance in practice. As in test case 3,
the solution, depicted in Fig. 14, contains a left-moving shock, a stationary shock at the step and a right-moving shock wave.
All solutions provide an adequate description of the water discharge at the dam break position, x = 0 m, but the differences
among the results for the rest of variables are noticeable. Approach (p,